556 research outputs found

    A function space framework for structural total variation regularization with applications in inverse problems

    Get PDF
    In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable total variation type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted total variation for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction

    Regularization graphs—a unified framework for variational regularization of inverse problems

    Get PDF
    We introduce and study a mathematical framework for a broad class of regularization functionals for ill-posed inverse problems: Regularization Graphs. Regularization graphs allow to construct functionals using as building blocks linear operators and convex functionals, assembled by means of operators that can be seen as generalizations of classical infimal convolution operators. This class of functionals exhaustively covers existing regularization approaches and it is flexible enough to craft new ones in a simple and constructive way. We provide well-posedness and convergence results with the proposed class of functionals in a general setting. Further, we consider a bilevel optimization approach to learn optimal weights for such regularization graphs from training data. We demonstrate that this approach is capable of optimizing the structure and the complexity of a regularization graph, allowing, for example, to automatically select a combination of regularizers that is optimal for given training data

    Unsupervised energy disaggregation via convolutional sparse coding

    Full text link
    In this work, a method for unsupervised energy disaggregation in private households equipped with smart meters is proposed. This method aims to classify power consumption as active or passive, granting the ability to report on the residents' activity and presence without direct interaction. This lays the foundation for applications like non-intrusive health monitoring of private homes. The proposed method is based on minimizing a suitable energy functional, for which the iPALM (inertial proximal alternating linearized minimization) algorithm is employed, demonstrating that various conditions guaranteeing convergence are satisfied. In order to confirm feasibility of the proposed method, experiments on semi-synthetic test data sets and a comparison to existing, supervised methods are provided.Comment: 9 pages, 2 figures, 3 table

    A sparse optimization approach to infinite infimal convolution regularization

    Get PDF
    In this paper we introduce the class of infinite infimal convolution functionals and apply these functionals to the regularization of ill-posed inverse problems. The proposed regularization involves an infimal convolution of a continuously parametrized family of convex, positively one-homogeneous functionals defined on a common Banach space XX. We show that, under mild assumptions, this functional admits an equivalent convex lifting in the space of measures with values in XX. This reformulation allows us to prove well-posedness of a Tikhonov regularized inverse problem and opens the door to a sparse analysis of the solutions. In the case of finite-dimensional measurements we prove a representer theorem, showing that there exists a solution of the inverse problem that is sparse, in the sense that it can be represented as a linear combination of the extremal points of the ball of the lifted infinite infimal convolution functional. Then, we design a generalized conditional gradient method for computing solutions of the inverse problem without relying on an a priori discretization of the parameter space and of the Banach space XX. The iterates are constructed as linear combinations of the extremal points of the lifted infinite infimal convolution functional. We prove a sublinear rate of convergence for our algorithm and apply it to denoising of signals and images using, as regularizer, infinite infimal convolutions of fractional-Laplacian-type operators with adaptive orders of smoothness and anisotropies

    A sparse optimization approach to infinite infimal convolution regularization

    Full text link
    In this paper we introduce the class of infinite infimal convolution functionals and apply these functionals to the regularization of ill-posed inverse problems. The proposed regularization involves an infimal convolution of a continuously parametrized family of convex, positively one-homogeneous functionals defined on a common Banach space XX. We show that, under mild assumptions, this functional admits an equivalent convex lifting in the space of measures with values in XX. This reformulation allows us to prove well-posedness of a Tikhonov regularized inverse problem and opens the door to a sparse analysis of the solutions. In the case of finite-dimensional measurements we prove a representer theorem, showing that there exists a solution of the inverse problem that is sparse, in the sense that it can be represented as a linear combination of the extremal points of the ball of the lifted infinite infimal convolution functional. Then, we design a generalized conditional gradient method for computing solutions of the inverse problem without relying on an a priori discretization of the parameter space and of the Banach space XX. The iterates are constructed as linear combinations of the extremal points of the lifted infinite infimal convolution functional. We prove a sublinear rate of convergence for our algorithm and apply it to denoising of signals and images using, as regularizer, infinite infimal convolutions of fractional-Laplacian-type operators with adaptive orders of smoothness and anisotropies
    corecore